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SUMMARY

The derivation of elliptic adaptive grid control functions which satisfy the area equidistribution concept
is presented. The resulting expressions are derived without approximation and are shown to provide
explicit control over cell area distributions. A modification to the equidistribution concept which yields
control functions that enable additional control of the near-boundary grid resolution is also proposed. A
computer code which incorporates these control functions has been developed and is applied to a series
of complex fluid flows to demonstrate the validity and utility of the derived expressions. Copyright
© 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The accuracy of simulations employing computational fluid dynamics (CFD) is highly depen-
dent upon the quality of the grid used in the numerical analysis. Large flow field gradients in
regions of large grid spacing lead to large discretization errors and poor solutions. In the
analysis of complex fluid flows, it is not always known a priori where significant flow field
gradients will occur, hence, the use of adaptive grids becomes especially important. Such
techniques make use of a solution error estimate to redistribute grid points so as to globally
minimize this error, ensuring that the more significant gradients, wherever they may occur, are
better resolved.

Adaptive grid schemes for structured grids are typically classified as belonging to one of
three groups which consist of variational methods, partial differential equation methods and
algebraic methods. The variational method, as introduced by Brackbill and Saltzman [1],
involves the minimization of a function consisting of grid smoothness, orthogonality and
adaption measures via the solution to a system of elliptic partial differential equations. The
sound mathematical basis of the method is attractive, however, its complexity renders it more
costly and difficult to use, as selection of optimal values for the relative weightings can become
a time consuming process. Kreis et al. [2] have explored this scaling problem and indicate that
poorly chosen weights can lead to a mathematically ill-posed problem and, hence, no solution
at all.

A related, though more tractable approach, involving the solution to Poisson’s equation was
first presented for two-dimensions by Winslow [3] and later by Anderson and Steinbrenner [4]
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and Anderson [5], and subsequently extended to three-dimensions by Kim and Thompson [6].
Within the well-known elliptic grid generation equations, modification of the non-homoge-
neous terms, otherwise known as the grid control functions, converts the scheme into an
effective adaptive grid generation tool. With proper formulation of the control functions, it is
possible to direct the placement of grid points to meet the particular needs of the problem at
hand. Therein lies both the difficulty and power of the method, as there is complete flexibility
in this regard.

The most common adaptive strategy falls into the category of algebraic schemes which have
as their basis the concept of equidistribution, or some variation thereof, as introduced by
Dwyer et al. [7]. Ease of implementation, computational speed and robustness are characteris-
tics of the algebraic approach, however, grid smoothness, skewness and orthogonality can
become significant problems as this approach typically involves uncoupled sweeps of a
one-dimensional adaption operator. Numerous investigators [8–12] have attempted to address
these shortcomings in different ways with varying degrees of success. From these efforts, it is
apparent that improved grid quality was achieved by use of a bi-directional adaption operator,
which employs an area-based rather than arc length-based concept, its simpler one-dimensional
counterpart. Furthermore, only a single adaption function need be specified for multi-dimen-
sional problems.

Partial differential equation methods remain attractive due to the fact that they represent a
good compromise between complexity and performance. They are less susceptible to the
problems exhibited by algebraic schemes in that the very nature of the governing equations
themselves tends to yield smooth grids. Winslow was the first to recognize the possibility of
using these equations to generate adaptive grids, his particular approach involving the
introduction of a ‘diffusion coefficient’ into Laplace’s equation. This ‘diffusion coefficient’ is
then related to solution gradients to affect the cell area distribution. In a different vein,
Anderson and Steinbrenner based their development of grid control functions on the concept
of arc equidistribution. With the elliptic equations recast as what they refer to as non-linear
equidistribution equations, they show that, under rather restrictive assumptions of local grid
orthogonality and vanishing curvature, the equations simplify considerably to the point where
they become identical to the arc equidistribution equations. This permits them to infer the
form of the control functions which are each shown to consist of a single term. Without these
assumptions, however, no control functions can be provided.

In a later paper, Anderson makes a strong case for the need of an area-based rather than arc
length-based formulation of the control functions to ameliorate the tendency of the latter to
produce skewed grids. Indeed, investigations by the current author into algebraic methods
employing one-dimensional and multi-dimensional adaption operators supports this assertion.
In this light, Anderson re-examines Winslow’s ‘diffusion’ approach and formally presents
control functions of the standard form which result from the method. These control functions,
which each include two terms, are shown to provide for improved grid quality over the arc
length based scheme. However, these new control functions are difficult to characterize in that
they satisfy no explicit constraint; they provide a means to influence rather than control the
area distribution. The question then arises as to whether control functions which permit direct
control of the distribution can be derived.

In the current work, a mathematically rigorous investigation into the derivation of a set of
elliptic adaptive grid control functions which satisfy the area equidistribution concept is
undertaken; exact expressions for the control functions are derived without approximation as
no assumptions about the nature of the grid are made. Furthermore, the formulation is
extended to permit additional control of the near-boundary grid. To demonstrate the validity
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of the results, a computer code has been developed which incorporates the derived control
functions within an elliptic grid generation scheme. This code is applied to a supersonic inlet
followed by application to a gas jet nose tip.

2. CONTROL FUNCTION DERIVATION

In two-dimensional transformed space (j, h), the elliptic grid generation equations [13] are

£r� +g(Pr� j+Qr� h)=0, (1)

where r� = (x, y) and g represents the square of the Jacobian of the transformation from (x, y)
to (j, h) space. P and Q are the control functions which provide the avenue through which the
placement of the grid points may be controlled. In tensor form, the operator £ is defined as

£=ggij (2

(j i (j j, (2)

where

g11=g22/g, g12= −g12/g, g22=g11/g, g=g11g22−g12
2 , (3)

and

gij=
(r�
(j i ·

(r�
(j j. (4)

The solution to this equation has been highly developed for grid generation of surfaces in two
dimensions. The goal of this work is to extend this capability by determining a set of control
functions which will turn this into an adaptive grid generation scheme which enforces the area
equidistribution concept. Hence, a relationship between the control functions and the adaption
function must be established. The first step in deriving such a relationship is to solve Equation
(1) for P and Q. To accomplish this, the scalar product of vector Equation (1) with r� j and r� h
is evaluated, which results in two simultaneous equations for P and Q, the solution for which
is

P=
1
g2 (g12r� h ·£r� −g22r� j ·£r� ), (5)

and

Q=
1
g2 (g12r� j ·£r� −g11r� h ·£r� ). (6)

To avoid rather involved algebraic manipulation of these equations, it is useful to recast them
in terms of Christoffel symbols using the following equation [14]

(2r�
(j

i
(j j=Gij

m (r�
(jm. (7)

This permits the scalar products to be recast within the parenthesis using

(r�
(jn ·£r� =ggnmgijGij

m, (8)

which, after some algebraic manipulation, yields
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P= −
1
g

(g22G11
1 −2g12G12

1 +g11G22
1 ), (9)

Q= −
1
g

(g22G11
2 −2g12G12

2 +g11G22
2 ). (10)

The concept of area equidistribution is now introduced to serve as a constraint such that,
when the resulting equations for P and Q are substituted back into Equation (1), an adaptive
set of elliptic equations will result.

The area equidistribution concept is stated mathematically as

f
g=constant, (11)

where the adaption function, f, is based on solution flow field gradients, which provides the
error indicator on which the adaption is to be based. Application of this concept will dictate
smaller cell areas in regions of large gradients and vice versa. Differentiation of this equation
with respect to j and h yields

− fj/f=gj/2g, (12)

− fh/f=gh/2g. (13)

The derivative of g may be expressed in terms of the Christoffel symbols using the following
equation [14]

1
2g
(g
(j j Gij

i , (14)

which enables the previous equations to be recast as

− fj/f=G11
1 +G12

2 , (15)

− fh/f=G12
1 +G22

2 , (16)

respectively. To introduce these equations into the expressions for P and Q, Equation (16)
multiplied by g12 is subtracted from Equation (15) multiplied by g22 to yield

g22G11
1 −2g12G12

1 = −g22fj/f+g12fh/f−g22G12
2 −g12(G12

1 −G22
2 ). (17)

In a similar manner, Equation (16) multiplied by g11 is subtracted from Equation (15)
multiplied by g12 to yield

g11G22
2 −2g12G12

2 =g12fj/f−g11fh/f−g11G12
1 −g12(G12

2 −G11
1 ). (18)

Note that these equations have been arranged such that the terms of the left-hand-side are
common to the terms in the expressions for the control functions given in Equations (9) and
(10), respectively. If these equations are substituted into the equations for P and Q, we obtain

P=
1
g

(g22( fj/f )−g12( fh/f )+g22G12
2 +g12(G12

1 −G22
2 )−g11G22

1 ), (19)

Q=
1
g

(g11( fh/f )−g12( fj/f )+g22G11
2 +g12(G12

2 −G11
1 )+g11G12

1 ). (20)

Substituting for the Christoffel symbols using Equation (7) and applying Equation (4), the
control functions can be rewritten as

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 481–491 (1999)



ADAPTIVE GRID GENERATION 485

P=
1
g

(g22( fj/f )−g12( fh/f )−r� j ·r� hh+r� h ·r� jh), (21)

and

Q=
1
g

(g11( fh/f )−g12( fj/f )−r� h ·r� jj+r� j ·r� jh), (22)

which are the exact form of the adaptive control functions derived without approximation.
For the arc length-based approach, previous researchers [4,6] have used control functions of

the form

P=
1
g

g22( fj/f ), (23)

and

Q=
1
g

g11( fh/f ), (24)

which contain only the leading terms of Equations (21) and (22), respectively. The expressions
derived by Anderson from Winslow’s ‘diffusion’ approach have the form

P=
1
g

(g22( fj/f )−g12( fh/f )), (25)

and

Q=
1
g

(g11( fh/f )−g12( fj/f )). (26)

Comparison of these equations to (21) and (22) demonstrates conclusively that Winslow’s
approach represents only an approximate constraint on the cell area distribution. For the case
of a uniform adaption function, Equations (25) and (26) are identically zero, which will yield
a Laplacian grid. In contrast, the control functions offered in Equations (21) and (22) do not
necessarily tend to zero. The nature of the grid which results from application of these control
functions is investigated herein. First, Equation (14) is expanded for j=1, which yields

1
2g
(g
(j

=G11
1 +G22

2 . (27)

Next the scalar product of r� j is formed with Equation (1) to obtain

r� j ·£r+gg11P+gg12Q=0. (28)

Substituting for the scalar product using Equation (8) and the control functions using
Equations (19) and (20) yields, after some algebraic manipulation,

G11
1 +G12

2 =0. (29)

A similar result also exists for the h differentiation of Equation (14). This demonstrates that
the control functions derived in Equations (19) and (20) satisfy the area equidistribution
concept, in that they enforce a constant cell area for a uniform adaption function. Whether or
not this is the preferred behavior is subject to debate, however, such a formulation presents an
avenue through which the cell area distribution may be ‘fine-tuned’ to meet specific problem
requirements.
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3. RESOLUTION ENHANCEMENT

Adaptive grid generation has been shown to significantly improve the resolution of important
flow field structures in highly non-linear flows. Typically, as the definition of the adaption
function and related parameters are adjusted to optimize the resolution of shock waves, a
coarsening of the grid prescribed to resolve boundary layers near solid walls usually results.
This especially troublesome tendency has not been adequately addressed within the literature
and in this author’s opinion has contributed to the general lack of applicability of the
technology.

To enhance the applicability of elliptically generated adaptive grids, a modified area
equidistribution concept, which affords the user the ability to control near-boundary resolu-
tion, is proposed. The modified concept has the form

f
g=h ·constant, (30)

where h(j, h) is a user defined function. The manner in which h must be defined to achieve
increased near-boundary resolution is easily discerned. First, in order to recover the standard
area equidistribution concept away from the wall, h is prescribed to take on a value of unity
at an arbitrary distance away from the boundary. Defining the boundary value, ho, to be less
than unity provides for a smaller cell area in accordance with Equation (30). In practice, this
function is computed within the domain using a modified form of transfinite interpolation.

The derivation of the control functions based on this concept proceeds as outlined
previously, where the modified expression is differentiated and cast in the form given in
Equation (12) such that

− fj/f�− fj/f+hj/h=gj/2g, (31)

and the remainder of the derivation remains the same. The control functions which incorporate
the modified form of the area equidistribution concept are obtained by substituting this
expression and its counterpart from the h differentiation for the terms in Equations (21) and
(22). Obviously with h=1 the original equations are recovered. However, with a suitably
defined distribution function, the near-wall resolution can be controlled and adjusted to meet
user requirements.

4. THE ADAPTIVE GRID SCHEME

The elliptic adaptive grid methodology described represents only a single element within a
complete adaptive algorithm as the adaption of the interior points and is governed by the
solution to Equation (1). Additional constraints which exist for boundary points preclude
direct use of this technique and other methods must be devised. This also represents a
significant problem in that orthogonality and smoothness are especially important issues in the
near-boundary region. Methods included within the computer code to provide for boundary
point movement can be found in Reference [12].

5. ADAPTION FUNCTION

In the applications to follow, the adaption function is based on a function W, which is
computed from a linear weighting of N user selected flow field variables according to the
equation
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W=
%n=1

N fnw̄n

%n=1
N fn

, (32)

where the dimensionless flow field variable w̄n has the weighting of fn. The adaption function
is then computed as

f=Woff+ �9W �2, (33)

where Wo is the area weighted average of �DW �2 and ff is a user defined weighting constant
which controls the strength of the adaption.

6. APPLICATIONS

6.1. Supersonic inlet

This application involves the calculation of an inviscid internal flow through a two-dimen-
sional duct with a 11.3° compression ramp. Freestream conditions used for this case were
M�=1.95, T�=530° R and p�=2116 psf. The initial and final adapted grids are shown in
Figure 1. A slight clustering was prescribed on the upper and lower boundaries of the initial
grid. The adaption function was based on the Mach number only with ff=0.2 and ho=1.

Extensive point movement is evident due to the system of shocks and the corner expansion
fan has also become more resolved. The initial clustering near the upper and lower walls has
vanished due to the lack of significant gradients. A close-up view of the adapted grid is shown
in Figure 2.

Figure 1. Adapted and initial grid for supersonic inlet.

Figure 2. Adapted grid for supersonic inlet, expanded view.
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Figure 3. Adapted grid with clustering enhancement, ho=0.5.

Figure 4. Adapted grid with clustering enhancement, ho=0.25.

To demonstrate the resolution enhancement offered by the modified form of the area
equidistribution concept, the adaption was repeated with grids generated corresponding to
ho=0.5 and 0.25. These grids are shown in Figures 3 and 4, respectively.

Note that although the increased resolution is artificially induced in the transverse direction,
the effects of the adaption function gradients continue to influence the streamwise point
distributions in these areas.

6.2. Gas jet nose tip

A more rigorous test of the method is achieved with the gas jet nose tip problem. In the past,
the concept of counterflow mass injection has been investigated as a means to alleviate
pressure and thermal loads over blunt shapes in supersonic flows. Experimental and numerical
investigations have indicated the flow field to be quite complex with multiple shocks and large
regions of subsonic and separated flow present. Due to the complex nature of this flow, the
analysis is ideally suited to the use of adaptive grid generation.

The configuration analyzed is a blunted, 2-inch diameter hemisphere cylinder having a
0.264-inch diameter jet orifice at the nose. The freestream conditions used were M�=2.5,
T�=231.1° and Re=1.4×106 based on body diameter. Turbulent flow was assumed. The
analysis was performed at a jet pressure ratio (jet total to freestream pitot pressure) of 2.08.
The jet supply was taken from the tunnel supply and issued at sonic velocity. The configura-
tion analyzed in this application is identical to that tested by Finley [15]. The final adapted grid
for this analysis was obtained using an adaption function composed of the Mach number and
vorticity magnitude with ff=0.20 and ho=1.0 and is shown in Figure 5.
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Figure 5. Adapted grid for gas jet nose tip analysis.

Readily apparent is the realignment of grid points due to the bow shock, Mach disk and
barrel shock as well as within the shear layer adjacent to the recirculation region. Note that the
weak recompression shock at reattachment is also discernible. A close-up view of the jet region
is shown in Figure 6.

As in the previous case, the adaption has been repeated to demonstrate the enhanced
clustering which may be obtained using the control functions derived from the modified
formulation. The resulting grid, in which additional near-wall clustering has been enhanced at
the body surface only, is shown in Figure 7.

7. CONCLUSIONS

This effort presents the results of a rigorous mathematical investigation into the derivation of
elliptic adaptive grid control functions which satisfy the area equidistribution concept. The
derived control functions differ from those offered by previous researchers, in that they
provide for direct control of the resulting cell area distributions. Furthermore, the formulation
provides a convenient means to permit additional user control over the near-boundary grid
resolution. Results presented with the derived control functions were shown to validate the
utility of the expressions in producing high quality adapted grids.
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Figure 6. Adapted grid for gas jet nose tip, jet region.

Figure 7. Adapted grid with clustering enhancement, ho=0.5.
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